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Background

 Theory of computation is the theoretical study of 

capabilities and limitations of computers. 

 Understanding of basic concepts in the theory of 

computation through simple models of computational 

devices

 This theory is very much relevant to practice, for 

example, in the design of new programming 

languages, compilers, string searching, pattern 

matching, computer security, artificial intelligence, 

etc



Mathematical preliminaries

 Throughout this course, we will assume that you 

know the following mathematical concepts:

1. A set is a collection of well-defined objects.

2. The set of natural numbers is N = {1, 2, 3, . . .}.

3. The set of integers is Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . 

. .}.

4. The set of rational numbers is Q = {m/n : m ∈ Z, n ∈
Z, n 6= 0}.

5. The set of real numbers is denoted by R.



Mathematical preliminaries

6. If A and B are sets, then A is a subset of B, written as 

A ⊆ B, if every element of A is also an element of B. 

For example, the set of even natural numbers is a 

subset of the set of all natural numbers. Every set A is 

a subset of itself, i.e., A ⊆ A. The empty set is a 

subset of every set A, i.e., ∅ ⊆ A.

7. If B is a set, then the power set P(B) of B is defined to 

be the set of all subsets of B:

P(B) = {A : A ⊆ B}.

Observe that ∅ ∈ P(B) and B ∈ P(B).



Mathematical preliminaries

8. If A and B are two sets, then 

(a) Their union is defined as:

A ∪ B = {x : x ∈ A or x ∈ B},

(b) Their intersection is defined as

A ∩ B = {x : x ∈ A and x ∈ B},

(c) Their difference is defined as

A \ B = {x : x ∈ A and x 6∈ B},

(d) The Cartesian product of A and B is defined as

A × B = {(x, y) : x ∈ A and y ∈ B},



Mathematical preliminaries

(e) The complement of A is defined as A = {x : x 6∈ A}.

9. A binary relation on two sets A and B is a subset of A ×

B.

10. A function f  from A to B, denoted by f : A → B, is a 

binary relation R, having the property that for each 

element a ∈ A, there is exactly one ordered pair in R, 

whose first component is a. We will also say that f(a) = b 

or f maps a to b, or the image of a under f is b. The set A 

is called the domain of f, and the set {b ∈ B : there is an a 

∈ A with f(a) = b}is called the range of  f.



Basic Definitions

1. Alphabet - a finite set of symbols. 
– Notation:  .

– Examples: Binary alphabet {0,1}, 
English alphabet {a,...,z,!,?,...}

2. String over an alphabet  - a finite sequence of 
symbols from .

– Notation: (a) Letters u, v, w, x, y, and z denote strings. 

(b) Convention: concatenate the symbols. No 
parentheses or commas used.

– Examples: 0000 is a string over the binary alphabet.

a!? is a string over the English alphabet.



Basic Definitions

3. Empty string: e or  denotes the empty sequence of 
symbols.

4. The length of a string w, denoted by |w|, is the number 

of symbols contained in w. The empty string denoted by ε, is 

the string having length zero. Thus, |00100| = 5, |aab| = 3, | ε | 

= 0. For example, if the alphabet is equal to {0, 1}, then, 10, 

1000, 0,101, and ε are strings over Σ , having lengths 2, 4, 1, 

3, and 0, respectively.



Basic Definitions

5. Language over alphabet  - a set of strings 
over . 

– Notation: L. 

– Examples: 

{0, 00, 000, ...} is an "infinite" language over the 
binary alphabet. 

{a, b, c} is a "finite" language over the English 
alphabet. 



Basic Definitions

6. Empty language - empty set of strings. 
Notation: .

 Binary operation on strings: Concatenation
of two strings u.v - concatenate the symbols 
of u and v. 
– Notation: uv

– Examples: 

 00.11 = 0011.

 .u = u. = u for every u. (identity for concatenation)



Binary relations on strings

1. Prefix - u is a prefix of v if there is a w such that 
v = uw.

– Examples: 

  is a prefix of 0 since 0 = 0

 apple is a prefix of appleton since appleton = apple.ton

2. Suffix - u is a suffix of v if there is a w such that 
v = wu.

– Examples:

 0 is a suffix of 0 since 0 = ? 

 ton is a suffix of appleton since ?



Binary relations on strings

3. Substring - u is a substring of v if there are 
x and y such that v = xuy.

– Examples: 

 let is a substring of appleton since appleton = 
app.let.on

 0 is a substring of 0 since 0 = epsilon.0.epsilon

Observe that prefix and suffix are special cases

of substring.



Relevance of strings and languages

 Each language in the linguistic field consists of three 

entities; letters, words, and sentences.

 Set of characters shape word, group of words collect 

sentences which form paragraph and etc.

 Not every set of letters can shape valid words and 

not every collection of words can make up a valid 

sentence.



Relevance of strings and languages

 Similarly, in computer languages, a certain set of 

characters form a word (e.g. while, for, and so on).  

Certain collection of words shape commands (e.g. 

for (i > 0; i < 100; i++), and certain set of commands 

compose program.

 Theory of Formal Languages is an interesting set 

of string of symbols that obey a set computer 

language rules. The set of symbols does not focus 

on the meaning. Formal language theory 

concentrates on syntax not on semantics (i.e. 

focuses on word spelling, not on the word meaning).



Relevance of strings and languages

 Closure (*) of the alphabet, is a language that 

contains a set of finite length of strings (including ). 

Each string is shaped from concatenation of the 

alphabet elements. Closure (*) sometimes is called 

Kleene star.
 L is a said to be a language over alphabet ∑, only if 

L  ∑*

 this is because ∑* is the set of all strings (of all 
possible length including 0) over the given 
alphabet ∑



Relevance of strings and languages

Examples:

1. Let L be the language of all strings consisting of n 0’s 
followed by n 1’s: 

L = {, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of 
0’s and 1’s: 

L = {, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language



Kleene Closure (*) 

Let ∑ be an alphabet.

– ∑k = the set of all strings of length k

– ∑* = ∑0 U ∑1 U ∑2 U …

– ∑+ = ∑1 U ∑2 U ∑3 U …



Kleene Closure

 Kleene Closure of a given language L:

– L0= {}

– L1= {w | for some w  L}

– L2= { w1w2 | w1  L, w2  L (duplicates allowed)}

– Li= { w1w2…wi | all w’s chosen are  L (duplicates allowed)}

– (Note: the choice of each wi is independent)

– L* = Ui≥0 Li (arbitrary number of concatenations)

Example:

 Let L = { 1, 00}

– L0= {}
– L1= {1,00}

– L2= {11,100,001,0000}

– L3= {111,1100,1001,10000,000000,00001,00100,0011}

– L* = L0 U L1 U L2 U …



Context-Free Grammar CFG

 The structure of the rules known as Context-Free 
Grammar CFG.

 The process of generating of final string of leaves 

starting from the beginning of a sequence of rules is 

known as derivation. 

 The language which is generated by CFG is called 

Context-free Language.



Context-Free Grammar CFG



Context-Free Grammar CFG

 A Context Free Grammar is a “machine” that 

creates a language.

 A language created by a CF grammar is called A 

Context Free Language.

.



Context-Free Grammar CFG





I

aIbIConsider grammar        :

A CFL consists of substitution rules called 

Productions.

The capital letters are the Variables.

The other symbols are the Terminals

1G



Context-Free Grammar CFG

1GThe grammar generates  the language

 0|  nbaB nn
called the language of

1G

denoted  by  1GL

This is a Derivation of the word aaabbb
1Gby

aaabbbaaaIbbbaaIbbaIbI 



Chomsky Normal Form (CNF)

Let G be a CFG for some L-{}

Definition: 

G is said to be in Chomsky Normal Form if all 
its productions are in one of the following 
two forms:

i. A  BC where A,B,C are variables, or

ii. A  a where a is a terminal

– G has no useless symbols

– G has no unit productions

– G has no -productions



Chomsky Normal Form (CNF)

 Example

UofH - COSC 3340 - Dr. Verma

G:

1. E  E+T | T*F | (E) | Ia | Ib | I0 | I1

2. T  T*F | (E) | Ia | Ib | I0 | I1

3. F  (E) | Ia | Ib | I0 | I1 

4. I  a | b | Ia | Ib | I0 | I1



CFGs & ambiguity

 Ambiguity of CFGs
– To show that a CFG is ambiguous, given one input string in 

the language which has more than one parse tree

 (or equivalenty, >1 leftmost/rightmost derivation)

– Finding one example is sufficient

 A CFL is inherently ambiguous if all grammars for that language 
are going to be ambiguous

 Converting ambiguous CFGs to non-ambiguous CFGs

– Not possible for inherently ambiguous CFLs

– For unambiguous CFLs, use ambiguity resolving techniques 
(e.g., precedence)



Finite Automata

 Deterministic Finite Automata (DFA)
– The machine can exist in only one state at any 

given time

 Non-deterministic Finite Automata (NFA)
– The machine can exist in multiple states at the 

same time

 -NFA is an NFA that allows -transitions

 What are their differences?



Deterministic Finite Automata

 A DFA is defined by the 5-tuple: 
– {Q, ∑ , q0,F, δ }

 Two ways to define:
– State-diagram (preferred) 

– State-transition table

 DFA construction checklist: 
– Associate states with their meanings 

– Capture all possible combinations/input scenarios 
 break into cases & sub cases wherever possible

– Are outgoing transitions defined for every symbol from every 
state?

– Are final/accepting states marked?

– Possibly, dead/error-states will have to be included depending on 
the design.



Non Deterministic Finite Automata

 A NFA is defined by the 5-tuple: 
– {Q, ∑ , q0,F, δ }

 Two ways to represent:
– State-diagram (preferred) 

– State-transition table

 NFA construction checklist: 
– Has at least one nondeterministic transition 

– Capture only valid input transitions
 Can ignore invalid input symbol transitions (paths will die implicitly)

– Outgoing transitions defined only for valid symbols from every 
state

– Are final/accepting states marked?



Non Deterministic Finite Automata

0,10,1

1q 4q2q 3q
1 1,0

 NFA – Nondeterministic Finite Automaton

1. A state nay have 0 or more transitions labeled 

with the same symbol.

2.       transitions are possible.



Regular Expressions

 DFA to Regular expression
– Enumerate all paths from start to every final state

– Generate regular expression for each segment, and 
concatenate

– Combine the reg. exp. for all each path using the + operator

 Reg. Expression to  -NFA conversion
– Inside-to-outside construction

– Start making states for every atomic unit of RE

– Combine using: concatenation, + and * operators as 
appropriate

– For connecting adjacent parts, use  -transitions

– Remember to note down final states



Pushdown Automata (PDA)

 What is?

– FA to Reg Lang, PDA is to CFL

 PDA == [  -NFA + “a stack” ]

 Why a stack?

Input

string -NFA Accept/reject

A stack filled with “stack symbols”



Pushdown Automata - Definition

 A PDA P := ( Q,∑,, δ,q0,Z0,F ):

– Q: states of the -NFA

– ∑: input alphabet

–  : stack symbols 

– δ: transition function

– q0: start state

– Z0: Initial stack top symbol

– F: Final/accepting states



Example

Let Lwwr = {wwR | w is in (0+1)*}

 CFG for Lwwr : S==> 0S0 | 1S1 | 

 PDA for Lwwr :

 P := ( Q,∑, , δ,q0,Z0,F ) 

= ( {q0, q1, q2},{0,1},{0,1,Z0},δ,q0,Z0,{q2})



Turing Machines

 Very powerful (abstract) machines that could 
simulate any modern day computer (although very, 
very slowly!)

 Why design such a machine?

– If a problem cannot be “solved” even using a TM, 
then it implies that the problem is undecidable

 Computability vs. Decidability


